close
查詢臺大圖書館館藏目錄 |
系統識別號 | U0001-1905200609260300 |
論文名稱(中文) | 老化對於噪音環境中傾聽言語時大腦活化之影響:以功能性磁振攝影研究中樞型老年性聽障 |
論文名稱(英文) | Aging Effects of Auditory Cortical Activation during Speech listening in Noise: A Study of Central Presbycusis Using fMRI |
校院名稱 | 臺灣大學 |
系所名稱(中) | 臨床醫學研究所 |
系所名稱(英) | Graduate Institute of Clinical Medicine |
學年度 | 94 |
學期 | 2 |
出版年 | 95 |
研究生(中文) | 黃俊豪 |
研究生(英文) | Juen-Haur Hwang |
學號 | P93421020 |
學位類別 | 碩士 |
語文別 | 中文 |
口試日期 | 2006-06-09 |
論文頁數 | 98頁 |
口試委員 | 指導教授-林凱南 共同指導教授-劉殿楨 委員-許權振 委員-楊偉勛 |
中文關鍵字 | 老化 言語聽知覺 噪音 功能性核磁共振造影 |
英文關鍵字 | aging speech perception noise functional magnetic resonance imaging |
學科別分類 | 學科別>醫學與生命科學>醫學 |
中文摘要 | 人類聽覺系統隨著年紀的增長,有兩種不同的退化表現:一種是聽覺閥值敏感度降低,另一種是分辨語言的能力下降。語言聽知覺的障礙,除了受到週邊聽覺系統損傷的影響,也會因為聽覺中樞的退化而加重症狀。此外,在言語訊號被干擾的情況下,例如有背景噪音或同時有多種言語刺激,老年人會比年輕人更難去感受並分辨,使得聽覺障礙更加嚴重,此一現象可能是聽覺中樞在處理與整合聽覺刺激的系統,產生異常或退化。 本實驗採用十二名年齡大於60歲、慣用右手、週邊聽力檢查正常之健康老年人。對照組為十二名,慣用右手、健康、無聽力障礙年齡、年齡介於21歲至31歲之年輕人。這些受試者皆以國語為慣用語之本國人。每位受試者接受功能性核磁共振腦部掃描,造影同時接受雙耳聲音刺激,刺激聲音分為兩種情況:一是單純連續語句刺激(音量約為70分貝),另一是連續語句加上寬頻噪音(訊造比約差5分貝)。分別取得2種刺激情況下之影像資料。之後,依群組合成分析法(group analysis),將所有影像資料加以SPM2軟體統計分析,資料經過空間修飾後(spatial smoothing with filters),以family-wise corrected P閾值小於0.01,以及在heighT閾值為4.80的情況下,空間常數的cluster number大於30,認為有意義的活化區域。最後,比較老年人和年輕人,在不同情況下大腦活化模式之異同。並將〝連續語句加上寬頻噪音〞減去〝單純連續語句〞刺激之影像資料,當作在寬頻噪音下,專注傾聽時聽覺系統之額外活化區域。 結果顯示,年輕人與老年人在無寬頻噪音干擾下,言語聽辨檢查結果與大腦活化模式類似,只有在兩側上顳迴的後部,也就是planum temporale區域,活化強度較弱;當有寬頻噪音干擾時,老年人的言語聽辨檢查結果比年輕人差,老年人的大腦活化模式,在左側大腦半球有些不連續的現象,而且,活化範圍明顯比年輕人小,尤其是兩側上顳迴前部與後部,以及兩側中顳迴區域。活化強度方面,無論年輕人或老年人,在寬頻噪音干擾下,聽覺皮質活化空間叢聚常數,與局部平均最大活化強度,都比無寬頻噪音干擾時小,此種現象在老年人比較嚴重,不過,活化空間叢聚常數,變化差異較大,而局部平均最大活化強度,差異較小。 另外,在背景噪音下,專注傾聽時聽覺系統之額外活化區域方面,年輕人在左側被殼,右側上顳迴前部等處,以及右側丘腦pulvinar處有明顯活化,而老年人只有兩側的丘腦內背核有活化。另外,本實驗並未發現腦幹部位的聽覺傳出系統有明顯活化,雖然如此,我們無法排除聽覺傳出系統在噪音干擾下進行言語聽知覺的角色。 結論:中樞型老年性聽障,初期的病變位置主要在兩側上顳迴前部與後部,以及中顳迴上部。而且,在寬頻噪音下進行言語聽知覺時,老年人由上而下的機制,也比年輕人差。 |
英文摘要 | The aging human auditory system is manifested by deterioration of two critical dimension of hearing, namely, reduction in threshold sensitivity and reduction in the ability to understand speech. The deterioration in speech perception ability results not only from the problems of peripheral hearing organs but also affected by the degeneration of central auditory system. Further more, the elderly listener’s difficulties increase dramatically more than the young listeners whenever the speech message is degraded. These difficulties may due to a central integrative and synthesizing hearing disability that reflects a progressive deterioration of the CNS. Twelve subjects aged over 61 with normal peripheral hearing will be included in this study. Another twelve young subjects aged between 21 and 31 will serve as control. Functional MRI will be performed while these subjects were listening to speech (both in quiet and in noise) binaurally using a Bruker’s 3T scanner. A pre-recorded continuous discourse is used as the speech signal. The same signal plus a background white noise (S/N ratio: + 5 dB) serve as the hearing in noise counterpart. Results showed that the SDS and activation patterns were very similar between young adults and elderly people during speech listenig, but the SDS and extent of activation decreased obviously in both groups durning speech listening in white noise, especially in elderly people. The reduced activation was mainly located in the anterior and posterior parts of superior temporal gyrus of both hemispheres, especially in the left side. The IWV of auditory cortex was smaller in elderly subjects than in young subjects, so as to the cluster levels and the voxel levels, especially in cluster levels. In addition, the ratio of the noise-induced masking effect in IWV was much greater in elderly subjects than in young subjects. Both of the cluster levels and voxle levels, especially in cluster levels, were also decreased greatly in elderly subjects. Furthermore, compared to speech listening alone, the activation increased in the left putamen, the anterior part of the right STG (BA 38), pulvinar of right thalamus, right claustrum and left caudate tail during speech listening in noise in younger adults. However, only medial dorsal nuclei of the thalamus of both hemispheres were additionally activated during speech listening in white noise in elderly subjects. To conclude, the early changes of central presbycusis maily located in anterior and posterior parts of the superior temporal gyrus, and suprior part of the middle temporal gysus of both hemispheres. Top-down mechanism during speech listening in noise were reduced in elderly subjects. |
論文目次 | 一、中文摘要 1 二、緒論 2 2-1研究背景 2 2-1-1人類聽覺系統的生理構造與功能 2 2-1-2老年性聽障的定義 2 2-1-3老年性聽障的流行病學 2 2-1-4老年性聽障的臨床表現與病理機轉 3 2-1-5聽覺器官的老化 3 2-1-6言語聽知覺之老化 5 2-1-7 聽覺中樞處理障礙之評估與診斷方法 7 2-2研究動機 9 2-3研究目的 11 2-4 研究假說 11 三、研究方法與材料 12 3-1 研究方法 12 3-1-1實驗方法綜論 12 3-1-2受試者 12 3-1-3實驗設備與聲音刺激 13 3-1-4功能性核磁共振之原理 13 3-2 進行步驟 17 3-2-1開機 17 3-2-2受試者之固定 17 3-2-3掃描之參數設定 17 3-2-4快速擷取回響平面影像 17 3-2-5 資料分析 17 四、 結果 19 4-1 行為聽力檢查之結果 19 4-1-1 雙字詞言語接受閾值(speech reception threshold)測驗 19 4-1-2 言語辨識測驗(speech discrimination score) 19 4-1-3 按鈕成功率 (按鈕之次數/總句數) 19 4-2 年輕人之結果 20 4-2-1 傾聽言語刺激時 20 4-2-2 在寬頻噪音下,傾聽言語刺激時 20 4-2-3 在寬頻噪音下,傾聽言語刺激時額外活化的區域 20 4-3 老年人之結果 21 4-3-1 傾聽言語刺激時 21 4-3-2 在寬頻噪音下,傾聽言語刺激時 21 4-3-3 在寬頻噪音下,傾聽言語刺激時額外活化的區域 21 4-4 年輕人與老年人結果之比較 22 4-4-1 以活化模式而言 22 4-4-2 以活化區域而言 22 4-4-3 以活化強度而言 22 4-4-4 在寬頻噪音下,傾聽言語刺激時額外活化區域之比較 23 4-5 腦幹區域的活化 24 五、 討論 25 5-1 早期老年性中樞型聽障在fMRI上的表現 25 5-2 人類大腦處理口說語言訊號的模式 27 5-3 言語聽知覺之處理過程 28 5-4 人類大腦語言聽知覺之大腦半球優勢 30 5-5 人類大腦語言聽知覺之功能性分區 32 5-6 由下而上訊號與由上而下控制之間的交互作用 35 5-7 噪音干擾下進行言語聽知覺 36 5-8 噪音干擾下大腦額外或增加活化的區域 38 5-9 言語聽知覺之研究方法 41 5-10 可能影響實驗結果之認知變數 43 六、 展望 44 七、 論文英文簡述 (summary) 45 八、 參考文獻 46 九、 圖表 57 十、 附錄 98 |
參考文獻 | Bailey BJ等。Head & Neck Surgery Otolaryngology。2001年,第 三版,第1625、1629、1637頁,LWW出版。 Dallos P等。The cochlea。1996年,第436頁,Springer出版。 International Organization for standards: Acoustics, 1990. Determination of occupational noise exposure and estimation of noise-induced hearing impairment. Geneva, International Organization for standards, 1999. Kaplan & Sadock。Comprehensive textbook of psychiatry。 1999年,第7版,第18、690頁。 Schuknecht HF等。 Pathology of the ear. 1974年,Cambridge, Harvard University Press。 Stephens D等。Scott-Brown Otolaryngology。1987年,第5版,第127頁。 朱冠州等譯。臨床神經解剖學,2004年,第三版,第136、144、145頁,藝軒出版社。 曾進興等。語言病理學基礎,1996年,第二卷,第80-104頁,心理出版社。 期刊論文: 王老得、蘇富美。中國語音均衡字彙表之編製研究。台灣耳鼻喉科醫學會雜誌 1979; 14: 1-9. 林政佑、林怡蕙、吳俊良。南台灣成人人口聽障盛行率分析。台灣耳鼻喉科醫學會第七十八屆學術演講會,節目摘要。第26頁。 Ackermann H, Hertrich I, Mathiak K, Lutzenberger W. Contralaterality of cortical auditory processing at the level of the M50/M100 complex and the mismatch field: a whole-head magnetoencephalography study. Neuroreport 2001; 12: 1683-1687. Alho K, Vorobyev VA, Medvedev SV, Pakhomov SV, Roudas MS, Tervaniemi M, Zuijen TV, Näätänen R. Hemispheric lateralization of cerebral blood-flow changes during selective listening to dichotically presented continuous speech. Cog. Brain Res. 2003; 17: 201-211. Ashtari M, Lencz T, Zuffante P, Bilder R, Clarke T, Diamond A, Kane J, Szeszko P: Left middle temporal gyrus activation during a phonemic discrimination task. Neuroreport 2004;15: 389-393. Backes WH, van Dijk P. Simultaneous sampling of event-related BOLD responses in auditory cortex and brainstem. MRM 2002; 47: 90-96. Bandettini PA, Jesmanowicz AE, Wong C, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. MRM 1992; 25: 187-194. Beaton A, McCarthy M. "Auditory neglect after right frontal lobe and right pulvinar thalamic lesions": comments on Hugdahl, Wester, and Asbjornsen (1991) and some preliminary findings. Brain Lang 1993; 44: 121-126. Behne N, Scheich H, Brechmann A. Contralateral white noise selectively changes right human auditory cortex activity caused by a FM-direction task. J Neurophysiol 2005; 93: 414-423. Behne N, Wendt B, Scheich H, Brechmann A. Contralateral white noise selectively changes left human auditory cortex activity in a lexical decision task. J Neurophysiol 2006, in press. Bilecen D, Seifritz E, Scheffler K, Henning J, Schulte AC. Amplitopicity of the human auditory cortex: an fMRI Study. Neuroimage 2002; 17: 710-718. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature 2000; 403: 309-312. Belin P, Zatorre RJ, Ahad P. Human temporal-lobe responses to vocal sounds. Cog. Brain Res. 2002; 13: 17-26. Belliveau JW. Rosen BR. Kantor HL. Rzedzian RR. Kennedy DN. McKinstry RC. Vevea JM. Cohen MS. Pykett IL. Brady TJ. Functional cerebral imaging by susceptibility-contrast NMR. Magnetic Resonance in Medicine 1990; 14: 538-46. Belliveau JW, Kennedy DN, McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254: 716-719. Bernal B, Altman NR. Auditory functional MR imaging. AJR 2001;176: 1009-1015. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Springer JA, Kaufman JN, Possing ET: Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex Mon 2000; 10: 512-528. Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD. Neural correlates of sensory and decision processes in auditory objects identification. Nature Neurosci 2004; 7: 295-301. Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Hyde JS. Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Brain Res Cogn Brain Res 1994; 2: 31-38. Bloch F, Hansen WW, Packard M. Nuclear induction. Pyyu Rev 1946; 69: 127. Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J. Tonotopic organization of the human auditory cortex as detected by BOLD-fMRI. Hear Res 1998; 126: 19-27. Brechmann A, Baumgart F, Scheich AH. Sound-level-dependent representation of frequency modulations in human auditory cortex: A low-noise fMRI study. J Neurophysiol 2002; 87: 423-433. Brechmann A, Scheich H. Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex 2005; 15: 578-587. Bregman AS. Auditory scene analysis. The perceptual organization of sound. Cambridge, MA: MIT Press; 1990. Broca PP. Nouvelle observation d’aph’emie produite par une lesion de la partie post’erieure des deuxi’eme et troisi’eme circonvolutions frontales. Bull Soc Anat Paris 1861; 6: 398-407. Bullmore ET, Rabe-Hesketh S, Morris RG, Williams SC, Gregory L, Gray JA, Brammer MJ. Functional magnetic resonance image analysis of a large-scale neurocognitive network. Neuroimage 1996; 4: 16-33. Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF. Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 2001; 57: 349-358. Carney L. Temporal response properties of neurons in the auditory pathway. Curr Opin Neurobiol 1999; 9: 442-446. Casanova C, Merabet L, Desautels A, Minville K. Higher-order motion processing in the pulvinar. Prog Brain Res 2001; 134: 71-82. Celsis P, Boulanouar K, Doyon B, Ranjeva JP, Berry I, Nespoulous JL, Chollet F: Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage 1999; 9: 135-144. Constable RT, Pugh KR, Berroya E, Mencl WE, Westerveld M, Ni W, Shankweiler D. Sentence complexity and input modality effects in sentence comprehension: an fMRI study. Neuroimage 2004; 22: 11-21. Constantinidis C, Procyk E. The primate working memory networks. Behav Brain Sci 1999; 22: 425-444. Cruickshanks KJ, et al.. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 1998; 148: 879. Davis AC, Ostri B, Parving A. Longitudinal study of hearing. Acta Otolaryngol 1990; 476: 12-22. Davin MH, Johnsrude IS. Hierarchical processing in spoken language comprehension. J Neurosci 2003; 23: 3423-3431. Deike S, Gaschler-Markefski B, Brechmann A, Scheich H. Auditory stream segregation rely on timbre involves left auditory cortex. Neuroreport 2004; 15: 1511-1514. Delvin JT, Raley J, Tunbridge E, Lanary K, Floyer-Lea A, Narain C. Cohen I, Behrens T, Jezzard P, Matthews PM, Moore DR. Functional asymmetry for auditory processing in human primary auditory cortex. J Neurosci 2003; 23: 11516-11522. Dhankhar A, Wexler BE, Fulbright RK, Halves T, Blamire AM, Shulman RG. Functional magnetic resonance imaging assessment of human brain auditory cortex response to increasing word presentation rate. J Neurophysiol 1997; 77: 476-483. Dubno JR et al.. Age-related and gender-related changes in monaural speech recognition. J Speech Lang Hear Res 1997; 40: 444。 Eden GF, Joseph JE, Brown HE, Brown CP, Zeffiro TA. Utilizing hemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behavior interleaved gradients technique. Magn. Reson. Med. 1999; 41: 13-20. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisition. Hum Brain Mapp 1999; 7: 89-97. Fitzgibbons PJ, Gordon-Salant S. Auditory temporal order perception in younger and older adults. J Speech Hear Res 1998; 41: 1052-1060. Freedman M, Alexander MP, Naeser MA. Anatomic basis of transcortical motor aphasia. Neurology 1984; 34: 409-4017. Friederici AD, Ruschemeyer SA, Hahne A, et al. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex 2003; 13: 170-177. Frisina DR, Frisina RD. Speech recognition in noise and presbycusis: relation to possible neural mechanism. Hear Res 1997; 106: 95-104. Gaschler-Markefki B, Baumgart F, Tempelman C, Woldorff MG, Scheich H. Activation of human auditory cortex in retrieval experiments: an fMRI study. Magn Reson Med 1998; 41: 13-20. Gates GA, Feeney MP, Higdon RJ. Word recognition and the articulation index in older listeners with probable age-related auditory neuropathy. J Am Acad Audiol 2003; 14: 574-581. Gelfand SA, Ross L, Miller S (1988): Sentence reception in noise from one versus two sources: effects of aging and hearing loss. J Acoust Soc Am 83: 248-256. Giraud AL, Truy E. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects. Neuropsychologia 2002; 40: 1562-1569. Grieve KL, Acuna C, Cudeiro J. The primate pulvinar nuclei: vision and action. Trend Neurosci 2000; 23: 35-9. Griffiths TD: The neural processing of complex sounds. Ann N Y Acad Sci 2001; 930: 133-142. Grimshaw GM, Kwasny KM, Covell E,Johnson RA. The dynamic nature of language lateralization: effects of lexical and prosodic factors. Neuropsychologica 2003; 41: 1008-1019. Grossman M, Cooke A, DeVita C, Chen W, Moore P, Detre J, Alsop D, Gee J. sentence processing strategies in healthy seniors with poor comprehension: An fMRI study. Brain Lang 2002; 80: 296-313. Gustafsson HÅ, Arlinger SD (1994): Masking of speech by amplitude-modulated noise. J Acoust Soc Am 95: 518-529. Hall DA, Haggard MP, Summerfield AQ, Akeroyd MA, Palmer AR. Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J Acoust Soc Am 2001; 109: 1559-1570. Horikoshi T, Magaseki Y, Omata T, et al. Speech disturbance in acute stage of putaminal hemorrhage [Article in Japanese]. No Shinkei Geka 1993; 21: 411-416. Hugdahl K, Brønnick K, Kyllingsbæk S, Law I, Gade A, Paulson OB. Brain activation during dichotic presentation of consonant-vowel and musical instruments stimuli: a 15O-PET study. Neuropsychologia 1999; 37: 431-440. Humphries C, Willard K, Buchsbaum B, Hickok G. Role of anterior temporal cortex in auditory sentence comprehension: an fMRI study. Neuroreport 2001; 12: 1749-1752. Hwang JH, Wu CW, Chou PH, Liu TC, Chen JH. Hemispheric difference in activation patterns of human auditory-associated cortex: an fMRI study.ORL 2005; 67: 242-246. Jäncke L, Shah NJ, Posse S, Grosse-Ryuken M, Müller-Gärtner HW. Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 1998; 36: 875-883. Jancke L, Wustenberg T, Schulze K, Heinze HJ. Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear Res 2002; 170: 166-178. Jancke L, Wustenberg T, Schulze K, Heinze HJ. Phonetic perception and the temporal cortex. Neuroimage 2002; 15: 733-746. Jerger J. Audiological findings in aging. Adv Otorhinolaryngol 1973; 20: 115. Just MA, Newman SD, Keller TA, McEleney A, Carpenter PA. Imagery in sentence comprehension: an fMRI study. Neuroimage 2004; 21: 112-124. Kaga K, Kurauchi T, Nakamura M, Shindo M, Ishii K. Magnetoencephalography and positron emission tomography studies of a patient with auditory agnosia caused by bilateral lesions confined to the auditory radiations. Acta Otolaryngol 2005; 125: 1351-1355. Keay DG, Murray JA. Hearing loss in the elderly: a 17-year longitudinal study. Clin Otolaryngol 1989; 14: 457. Khalfa S, Bougeard R, Morand N, Veuillet E, Isnard J, Guenot M, Ryvlin P, Fisher C, Collet L (2001): Evidence of peripheral auditory activity modulation by the auditory cortex in humans. Neuroscience 104: 347-358. Kimura D. Functional asymmetry of the brain in dichotic listening. Cortex 1967; 3: 163-178. Koelsch S, Kasper E, Sammler D, Schulze K, Gunter T, Friederici AD. Music, language and meaning: brain signatures of semantic processing. Nature Neurosci 2004; 7: 302-307. Kotz SA, Cappa SF, von Cramon DY, Friederici AD. Modulation of the lexical-semnatic network by auditory semantic priming: an event-related functional MRI study. Neuroimage 2002; 17: 1761-1772. Kumar UA, Vanaja CS (2004): Functioning of olivocochlear bundle and speech perception in noise. Ear Hearing 25: 142-146. Kuniyoshi S, Eiji W, Yukari O. Functional mapping the human somatosensory cortex with echo plannar MRI. MRM 1995; 33: 736-743. Lattner S, Meyer ME, Friederici AD. Voice perception: Sex, pitch, and the right hemisphere. Hum Brain Mapp 2005; 24: 11-20. Lee JS, Lee DS, Oh SH, Kim CS, Kim JW, Hwang CH, Koo J, Kang E, Chung JK, Lee MC. PET evidence of neuroplasticity in adult auditory cortex of postlingual deafness. J Nucl Med 2003; 44: 1435-1439. Liberman MC, Guinan JJ (1998): Feedback control of the auditory periphery: anti-masking effects of middle ear muscle vs. olivocochlear efferents. J Commun Disord 6: 471-482. Lisowska G, Smurzynski J, Morawski K, Namyslowski G, Probst R (2002): Influence of contralateral stimulation by two-tone complexes, narrow-band and broad-band noise signals on the 2f1-f2 distortion product otoacoustic emissions levels in humans. Acta Otolaryngol 122: 613-619. Lister J, tarver K. Effect of age on silent gap discrimination in synthetic speech stimuli. J Speech Lang Hear Res 2004; 47: 257-268. Lasota KJ, Ulmer JL, Firszt JB, Biswal BB, Daniels DL, Prost RW. Intensity-dependent activation of the primary auditory cortex in functional magnetic resonance imaging. J Computer Assisted Tomography 2003; 27: 213-218. Levin DN, Uftring SJ. Detecting brain activation in fMRI data without prior knowledge of mental event timing. Neuroimage 2001; 13: 153-160. Levitin DJ, Menon V. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. Neuroiamge 2003; 20: 2142-2152. Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci 2002; 14: 902-912. Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. Neuroimage 2004; 21: 154-162. Matthews LJ, et al.. Extended high-frequency thresholds in older adults. J Speech Lang Hear Res 1997; 40: 208. Menon V, Levitin DJ, Smith BK, Lembke A, Krasnow BD, Glazer D, Glover GH, Mcadams S. Neural correlates of timbre change in harmonic sounds. Neuroimage 2002; 17: 1742-1754. Mesulam MM.Large-scale neurocognitive networks and disturbuted processing for attention, language, and memory. Ann Neurol 1990; 28: 597-613. Meyer M, Steinhauer K, Alter K, et al. Brain activity varies with modulation of dynamic pitch variance in sentence melody. Brain Lang 2004; 89: 277-289. Michael GA, Buron V. The human pulvinar and stimulus-driven attentional control.Behav Neurosci. 2005; 119: 1353-1367. Moscicki EK, et al. Hearing loss in the elderly: an epidemiologic study of the Framingham Heart Study Cohort. Ear Hear 1985; 6: 184. Moulin A, Carrier S (1998): Time course of the medial olivocochlear efferent effect on otoacoustic emissions in human. Neuroreport 9: 3741-3744. Noesselt T, Shah NJ, Jäncke L. Top-down and bottom-up modulation of language related areas-an fMRI study. BMC Neuroscience 2003; 4: 13. Ogawa S, Lee T, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn. Reson. Med. 1990; 14: 68-78. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with MRI. Proc Natl Acad Sci 1992; 89: 5951-5955. Ogawa S, Lee TM, Barrere B. The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn. Reson. Med. 1993; 29: 205-210. Otsuki M, Soma Y, Sato M, Homma A, Tsuji S. Slowly progressive pure word deafness. Eur Neurol 1998; 39: 135-140. Pandya DN. Anatomy of the auditory cortex. Rev Neurol (Paris) 1995; 151: 486-494. Papathanassiou D, Etard O, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N. A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 2000; 11: 347-357. Patel AD. Language, music, syntax and brain. Nature Neurosci 2003; 6: 674-681. Paul L. Tumor detection by nuclear magnetic resonance. Science 1971; 171: 1151. Perea Bartolome MV, Ladera Femandez V. Neurofunctional aspects of the thalamus. Rev Neurol 2004; 38: 687-693. Petersson KM, Reis A, Askelof S, Castro-Caldas A, Ingvar M. Language processing modulated by literacy: a network analysis of verbal repetition in literate and illiterate subjects. J Cogn Neurosci 2000; 12: 364-382. Pichora-Fuller MK, Souza PE. Effects of aging on auditory processing of speech. Intl J Audiol 2003; 42: 2S11-2S16. Pickett ER, Kuniholm E, Protopapas A, Friedman J, Lieberman P. Selective speech motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nucleus: a case study. Neuropsychologia 1998; 36: 173-188. Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, Lechevalier B, Eustache F: The structural components of music perception: a functional anatomical study. Brain 1997; 120: 229-243. Pugh KR, Shaywitz BA, Shaywitz SE, et al. Auditory selective attention: an fMRI investigation. Neuroimage 1996; 4: 159-173. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Pyyu Rev 1946; 69: 37. Rappaport JM, Gulliver JM, Phillips DP, Van Dorpe RA, Maxner CE, Bhan V (1994): Auditory temporal resolution in multiple sclerosis. J Otolaryngol 23: 307-324. Ravicz ME, Melcher JR. Reducing imager-generated acoustic noise at the ear during functional magnetic resonance imaging: passive attenuation. Otolaryngology 1998 [Abstracts of twenty-first midwinter research meeting, association for Research Otolaryngology]: 208. Riecker A, Mathiak K, Wildgruber D, et al. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 2005; 64: 700-706. Roser DH, Fishman YI, Arezzo JC, Steinschneider M. Binaural interactions in primary auditory cortex of the awake macaque. Cereb Cortex 2000; 10: 574-584. Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE. Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cogn Neurosci 2001; 13: 829-843. Russo N, Nicol T, Musacchia G, Kraus N. Brainstem responses to speech syllables. Clinical Neurophysiology 2004; 115: 2021-2030. Salvi RJ, Lockwood AH, Frisina RD, Coad ML, Wack DS, Frisina DR (2002): PET imaging of the normal human auditory system: response to speech in quiet and in background noise. Hear Res 170: 96-106. Scheich H, Baumgart F, Gaschler-Markefsi B, et al. Functional magnetic resonance imaging of a human auditory cortex area involved in foreground and background decomposition. Eur J Neurosci 1998; 10: 803-809. Schuknecht HF. Further observations on the pathology of presbycusis. Arch Otolaryng 1964; 80: 369-382. Schuknecht HF, Gacek MR. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 1993; 102: 1. Scott SK, Blank CC, Rosen S, Wise RJS. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 2000; 123: 2400-2406. Scott SK, Rosen S, Wickham L, Wise RJ (2004): A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J Acoust Soc Am 115: 813-821. Seidman LJ, Breiter HC, Goodman JM, et al. A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology 1998; 12: 505-518. Sekiyama K, Kanno I, Miura S, et al. Auditory-visual speech perception examined by fMRI and PET. Neurosci Res 2003; 47: 277-287. Shapleske J, Rossell SL, Woodruff PW, David AS. The planum temporale: a systemic, quantitative review of its structural, functional and clinical significance. Brain Res Rev 1999; 29: 26-49. Small SL, Nusbaum HC. On the neurobiological investigation of language understanding in context. Brain & Language 2004; 89: 300-311. Small SL, Uftring SJ. Nusbaum H. A hierarchical design for contexual imaging of language comprehension [abstract]. Neuroimage 2003; 15: CD-ROM. Smith ZM, Delgutte B, Oxenham A. Chimaeric sounds reveal dichotomies in auditory perception. Nature 2002; 416: 87-90. Specht K, Reul J: Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: an auditory rapid event-related fMRI-task. Neuroimage 2003; 20: 1944-54. Sperner J, Sander B, Lau S, Krude H, Scheffner D. Severe transitory encephalopathy with reversible lesions of the claustrum. Pediatr Radiol 1996; 26: 769-771. Summers V, Molis MR (2004): Speech recognition in fluctuating and continuous masker: effects on hearing loss and presentation level. J Speech Lang Hear Res 47: 245-256. Taniwaki T, Tagawa K, Sato F, Iino K. Auditory agnosia restricted to environmental sounds following cortical deafness and generalized auditory agnosia. Clin. Neurol. Neurosurg. 2000; 102: 156-162. Thornton AR, Raffin MJ. Speech-discrimination score modeled as a binomial variable. J Sp Hear Res 1978; 21: 507-518. Tremblay KL, Billings C, Rohila N. Speech evoked cortical potentials: effects of age and stimulus presentation rate. J Am Acad Audiol 2004; 15: 226-37 Tzourio N, Crivello F, Mellet E, Nkanga-Ngila B,Mazoyer B. Functional anatomy of dominance for speech comprehension in left handers vs right handers. Neuroimage 1998; 8: 1-16. Viader F, Lechevalier B, Eustache F, et al. A case of aphasia with speech disorders by infarction of the left caudate nucleus and putamen [Article in French]. Rev Neurol (Paris) 1987; 143: 814-822. Vorobyev VA, Alho K, Medvedev SV, et al. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention. Brain Res Cogn Brain Res 2004; 20: 309-322. Vuust P, Roepstorff A, Wallentin M, Mouridsen K, Ostergaard L. It don't mean a thing... Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). Neuroimage. 2006 Mar 1. Walton JP, Simon H, Frisina R. Age-related alternations in the neural coding of envelope periodicities. J Neurophysiol 2002; 88: 565-578. Welzl-Muller K, Stephan K. Speech recognition performance with hearing-aid in noiseless and noisy conditions. Audiol Akustik 1988; 27: 108-119. Wessinger CM,Buonocore MH, Kussmaul CL, Mangun GR. Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum Brain Mapp 1997; 4: 18-25. Wessinger CM, Tian B, Japikse KC,et al. Processing of complex sounds in human auditory cortex. Hum. Brain Mapp. 1997; 5: 18-25. Wester K, Irvine DR, Hugdahl K. Auditory laterality and attentional deficits after thalamic haemorrhage. J Neurol 2001; 248: 676-683. Wildgruber D, Riecker A, Hertrich I, Erb M, Grodd W, Ethofer T, Ackermann H. Identification of emotional intonation evaluated by fMRI. Neuroimage 2005; 15: 1233-1241. Wingfield A, Tun PA, Koh CK, Rosen MJ. Regaining lost time: adult aging and effect of time restoration on the recall of time-compressed speech. Psychol Aging 1999; 14: 380-389. Wingfield A, Tun PA. Spoken language comprehension in older adults: interactions between sensory and cognitive change in normal aging. Semin Hear 2001; 22: 287-301. Wightman FL, Kistler DJ. The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 1992; 91: 1648-1661. Wood GK, Berkowitz BA. Visualization of subtle contrast-related intensity changes using temporal correction. MRM 1994; 12: 1013-1020. Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X, Gao JH. Involvement of the cerebellum in semantic discrimination: An fMRI study. Human Brain Mapp 2003; 18: 208-214. Yellin MW, Jerger J, Fifer RC. Norms for disproportionate loss in speech intelligibility. Ear Hear 1989; 10: 231-234. Yetkin FZ, Roland PS, Purdy PD, Christensen WF. Evaluation of auditory cortex activation by using silent fMRI. Am J Otolaryngol 2003; 24: 281-289. Yetkin FZ, Roland PS, Christensen WF, Purdy PD. Silent functional magnetic resonance imaging (fMRI) of tonotopicity and stimulus intensity coding in human primary auditory cortex. Laryngoscope 2004; 114: 512-518. Zahn R, Huber W, Drews E, Erberich S, Krings T, Willmes K, Schwarz M. Hemispheric lateralization at different levels of human auditory word processing: a functional magnetic resonance imaging study. Neurosci Letters 2000; 287: 195-198. Zatorre RJ, Belin P: Spectral and temporal processing in human auditory cortex. Cereb Cortex 2001; 11: 946-953. Zatorre RJ, Belin P, Penhune VB. Structure and function of auditory cortex: music and speech. Trends Cogn Sci 2002; 6: 37-46. Zatorre RJ, Evans AC, Meyer E, Gjedde A: Lateralization of phonetic and pitch discrimination in speech processing. Science 1992; 256: 846-849. Zeng FG, Martino KM, Linthicum FH, Soli SD (2000): Auditory perception in vestibular neurectomy subjects. Hear Res 142: 102-112. |
論文全文使用權限 | 同意授權瀏覽/列印電子全文服務,於2006-08-02起公開。 |
出處:電子學位論文服務
全站熱搜
留言列表